
DRY CSS
A DON’T-REPEAT-YOURSELF METHODOLOGY

FOR CREATING EFFICIENT, UNIFIED AND
SCALABLE STYLESHEETS

Jeremy Clarke • http://jeremyclarke.org

Download these slides:
http://slideshare.net/jeremyclarke

http://jeremyclarke.org
http://jeremyclarke.org
http://www.slideshare.net/jeremyclarke
http://www.slideshare.net/jeremyclarke
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

WHO IS JEREMY CLARKE?

• Communications Studies at Concordia
University.

• HTML+CSS since 2003

•Montreal WordPress Community/
WordCamp organizer.

OVERVIEW

• An example of DRY CSS, Global Voices.

•DRY principle and problems with CSS.

• Preparsers (LESS and SASS) and their issues.

•DRY CSS theory, implementation and benefits.

• Appendix: OOCSS

DRY EXAMPLE: GLOBAL VOICES

DRY EXAMPLE: GLOBAL VOICES

• Applying DRY reduced 4200
lines to 2400.

• Standardized Shapes, text
sizes, colors and modules.

•Nothing lost, just better
organized. 0

1,250

2,500

3,750

5,000

Lines of CSS

Before DRY CSS After DRY CSS

DRY EXAMPLE: GLOBAL VOICES

• Groups define shared
properties.

• Groups have many selectors.

• Each property/value pair is
defined only once.

DRY EXAMPLE: GLOBAL VOICES
#ROUNDED5-BORDER2

#PALE-GREY-BACKGROUND

#MEDIUM-ORANGE-TEXT

#GREY-BUTTON
 #GREY-BUTTON-HOVER
#GREY-BUTTON-CLICK

DRY EXAMPLE: GLOBAL VOICES

• Elegantly organized IE hacks
and Right-To-Left (RTL)
styles into groups for the
common fixes.

• Font-size groups re-used in
optional Large-Font theme.

2 PRINCIPLES OF GOOD CSS

• Keep style separate from content.

• HTML should be structural. Tags, classes and IDs should refer
to the content itself rather than how it looks.

• Avoid specificity by harnessing the cascade.

• Selectors and definitions should be as global as possible for
design consistency and to avoid specificity collisions.

DRY: DON’T REPEAT YOURSELF
• a.k.a "Single Source of Truth" principle.

• "Every piece of knowledge must have a single, unambiguous,
authoritative representation within a system." *

•DRY code means all uses of data change simultaneously rather
than needing to be replicated.

•DRY is the fundamental reason to use of variables and
functions in all programming.

• Bugs love a wet mess.

* http://en.wikipedia.org/wiki/Don't_repeat_yourself

http://en.wikipedia.org/wiki/Don't_repeat_yourself
http://en.wikipedia.org/wiki/Don't_repeat_yourself

PROBLEMS WITH KEEPING CSS DRY

•No variables - We can’t re-use values across properties (I.e
a color hex).

•No mixins (functions) - No way to re-use sets of property/
value pairs across definitions.

• Result: Constant duplication of style definitions across different
selectors.

BRUTE FORCE: CSS PREPARSERS
• Add a new language based on CSS that

has the necessary tools and a new
parsing layer to read it.

• Variables to re-use values across
definitions.

• Mixins to include a class inside
another class.

• All kinds of other programmy things
(functions, switch conditions)

Variables in LESS*

Mixins in LESS*
* E.g. http://lesscss.org/ and http://sass-lang.com/

http://lesscss.org/
http://lesscss.org/
http://sass-lang.com/
http://sass-lang.com/

CSS PREPARSERS: ISSUES

• LESS and SASS do create a fantastic, DRY-capable CSS.

• BUT at the cost of destandardization and dependence on
external libraries. It isn’t CSS.

• They can still be misused to create wet, sloppy stylesheets.
Organizational methodology remains vital.

• Question: How can we get the same effect with standard CSS?

PRINCIPLES OF DRY CSS
(TL;DR)

•Don't Repeat Yourself. Never repeat a style/property
definition if you can avoid it.

•Group selectors with shared properties rather than
defining them separately.

CREATING DRY CSS

• Group selectors that share
properties above the properties
they share.

•Name the groups based on their
role in the design.

• Use the name as an ID at the top
of the list and a class at bottom.

ORGANIZING DRY CSS
•Decide on group types and

groups as necessary for your
design, operational needs
and/or other CSS
methodologies.

• Recommended: Colors, Text,
Shapes, Structures, Modules.

• At right: GV’s DRY groups,
visualized by CSSEdit for
Mac*

* http://macrabbit.com/espresso/

http://macrabbit.com/espresso/
http://macrabbit.com/espresso/

KEEPING IT DRY

•Make individual selectors as rare
and sparse as possible, only use
them as exceptions.

• Always have an answer to "Why
isn't this part of a group?"

•Don’t go crazy. Benefits scale even if
some definitions remain moist.

BENEFITS OF DRY CSS

• 2 simple rules to follow that ensure a solid organizational
structure.

• Less CSS, shorter and smaller (kb) stylesheets.

• Promotes good design practice and uniform updates.

• Uses only philosophically and syntactically standard CSS.

BENEFITS:
PROMOTES CONCEPTUAL DESIGN

• Encourages you to think in terms of style patterns (groups),
rather than individual objects.

•Naming of groups encourages rational organization of designs.

•Overall design tightens up, related objects become stylistically
paired rather than simply matching.

• Listing all group members together encourages optimization
and generalization of selectors because you see how
interrelated/inheritable they are.

BENEFITS:
EDITS TO GROUPS AFFECT ALL MEMBERS

• Avoids need to find all related styles to match changes.

• Changes are less likely to be inconsistently applied.

•When testing changes the dev sees all group members change
as well.

•Moving selectors between groups to restyle is fast and easy.

BENEFITS:
TAKES ADVANTAGE OF INSPECTORS

• Inspecting an object shows cascade of
groups it participates in.

• Group "name" (starting ID, i.e.
#SMALL-TEXT) is visible in inspector.

• Seeing all group members informs
dev of related elements that should
be considered.

• Live-edits expose the change in
related items as well.

BENEFITS:
DOESN’T REQUIRE CHANGES TO HTML

• Uses whatever classes and IDs are already present.

• If HTML needs editing it's only to add more detailed semantic
classes to use in your DRY groups.

• Useful when generated HTML is out of your control
(WordPress core/plugins, 3rd party widgets)

BENEFITS:
COMPLETELY STANDARD

• Simply an organizing princinple for normal CSS.

• Adheres to separation of style and content.

• Both backward and forward compatible, from IE6 hacks to
prefixed CSS3 properties.

• CSS can be pasted anywhere and just work.

• Groups can be extracted and re-used elsewhere by removing
group members and inserting new ones.

BENEFITS:
INTEGRATES WITH OTHER

METHODOLOGIES

• Compatible with most other CSS methodologies like grids,
OOCSS* or SMACSS** because the way you organize your
groups is up to you.

• Progressive enhancement and browser support is your
choice. DRY only defines how you organize your selectors and
properties.

* https://github.com/stubbornella/oocss/wiki ** http://smacss.com/book/

https://github.com/stubbornella/oocss/wiki
https://github.com/stubbornella/oocss/wiki
http://smacss.com/book/
http://smacss.com/book/

PERFORMANCE ISSUES?

• TL;DR: Probably not.

• "For most web sites, the possible performance gains from
optimizing CSS selectors will be small, and are not worth the
costs." ~Steve Sounders*

• Having many selectors does not inherently hurt performance.

• See Steve Sounders research** for optimizations that matter
(and can be applied to DRY CSS).

* http://www.stevesouders.com/blog/2009/03/10/performance-impact-of-css-selectors/
** http://www.stevesouders.com/blog/2009/06/18/simplifying-css-selectors/

http://www.stevesouders.com/blog/2009/06/18/simplifying-css-selectors/
http://www.stevesouders.com/blog/2009/06/18/simplifying-css-selectors/
http://www.stevesouders.com/blog/2009/06/18/simplifying-css-selectors/
http://www.stevesouders.com/blog/2009/06/18/simplifying-css-selectors/

OOCSS: "OBJECT ORIENTED"
• “Separate structure and

skin.”

• “Separate container and
content.”

•Objects are re-usable
content patterns.

• Skins are sets of visual
decorations to be applied to
objects.

• Implementation

•Define re-usable classes
like .media, .box and .red

• Add them to HTML tags
throughout your site to
create a consistent and
efficient design.

Sources
https://github.com/stubbornella/oocss/wiki/FAQ

http://slideshare.net/stubbornella/object-oriented-css

https://github.com/stubbornella/oocss/wiki/FAQ
https://github.com/stubbornella/oocss/wiki/FAQ
http://www.slideshare.net/stubbornella/object-oriented-css
http://www.slideshare.net/stubbornella/object-oriented-css

DRY CSS <3 OOCSS
• The fundamental principles and goals are the same:

• Create logical style groups that define your site.

• Apply them to elements rather than redefining css on many
selectors.

• Focus on consistency of objects across the site through
direct style linkage.

• “Object-orientation” can be integrated into a DRY approach
when choosing your groups and group types.

DRY CSS > OOCSS
• The difference:

•DRY stacks selectors above a single definition in the CSS.

•OOCSS applies generic classes to HTML tags throughout
the document.

•OOCSS violates the separation of content and style by
polluting HTML with meaningless style-classes.

• This is unnecessary because DRY CSS can achieve the
same goal while maintaining separation.

DRY CSS > OOCSS (DETAILS)

•DRY offers an easy way to route around situations where
OOCSS classes can't be added to HTML (out of your
control, inconvenient, undesirable).

• Generic group class (i.e .small-text) for each DRY group can
still be used in OOCSS way if needed (especially in transient
content rather than templates).

•DRY allows group membership to be managed without
editing HTML templates. Less files to edit, less people involved.

•DRY keeps style and content separate LIKE IT SHOULD BE.

DRY CSS REVIEW
Group re-usable

properties
Name the

groups logically
Add selectors to
various groups

QUESTIONS?

DRY CSS
A DON’T-REPEAT-YOURSELF METHODOLOGY

FOR CREATING EFFICIENT, UNIFIED AND
SCALABLE STYLESHEETS

Jeremy Clarke • http://jeremyclarke.org

Download these slides:
http://slideshare.net/jeremyclarke

Creative Commons Share Alike
http://creativecommons.org/licenses/by-sa/3.0/

http://jeremyclarke.org
http://jeremyclarke.org
http://www.slideshare.net/jeremyclarke
http://www.slideshare.net/jeremyclarke
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

